ZNF43

From Wikipedia, the free encyclopedia


Zinc finger protein 43
Identifiers
Symbol(s) ZNF43; AURKA; ARK1; AURORA2; BTAK; STK15; KOX27; DKFZp686L1854; HTF6; ZNF39L1
External IDs OMIM: 603972 MGI3040691 HomoloGene86693
RNA expression pattern

More reference expression data

Orthologs
Human Mouse
Entrez 7594 238690
Ensembl ENSG00000198521 ENSMUSG00000055480
Uniprot P17038 n/a
Refseq NM_003423 (mRNA)
NP_003414 (protein)
NM_001001152 (mRNA)
NP_001001152 (protein)
Location Chr 19: 21.78 - 21.81 Mb Chr 13: 67.76 - 67.76 Mb
Pubmed search [1] [2]

Zinc finger protein 43, also known as ZNF43, is a human gene.[1]

This gene belongs to the C2H2-type zinc finger gene family. The zinc finger proteins are involved in gene regulation and development, and are quite conserved throughout evolution. Like this gene product, a third of the zinc finger proteins containing C2H2 fingers also contain the KRAB domain, which has been found to be involved in protein-protein interactions.[1]

Contents

[edit] See also

[edit] References

[edit] Further reading

  • Lovering R, Trowsdale J (1991). "A gene encoding 22 highly related zinc fingers is expressed in lymphoid cell lines.". Nucleic Acids Res. 19 (11): 2921–8. PMID 1711675. 
  • Huebner K, Druck T, Croce CM, Thiesen HJ (1991). "Twenty-seven nonoverlapping zinc finger cDNAs from human T cells map to nine different chromosomes with apparent clustering.". Am. J. Hum. Genet. 48 (4): 726–40. PMID 2014798. 
  • Bellefroid EJ, Poncelet DA, Lecocq PJ, et al. (1991). "The evolutionarily conserved Krüppel-associated box domain defines a subfamily of eukaryotic multifingered proteins.". Proc. Natl. Acad. Sci. U.S.A. 88 (9): 3608–12. PMID 2023909. 
  • Thiesen HJ (1991). "Multiple genes encoding zinc finger domains are expressed in human T cells.". New Biol. 2 (4): 363–74. PMID 2288909. 
  • Bellefroid EJ, Marine JC, Ried T, et al. (1993). "Clustered organization of homologous KRAB zinc-finger genes with enhanced expression in human T lymphoid cells.". EMBO J. 12 (4): 1363–74. PMID 8467795. 
  • Hartley JL, Temple GF, Brasch MA (2001). "DNA cloning using in vitro site-specific recombination.". Genome Res. 10 (11): 1788–95. PMID 11076863. 
  • Simpson JC, Wellenreuther R, Poustka A, et al. (2001). "Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing.". EMBO Rep. 1 (3): 287–92. doi:10.1093/embo-reports/kvd058. PMID 11256614. 
  • Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMID 12477932. 
  • Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs.". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID 14702039. 
  • Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMID 15489334. 
  • Wiemann S, Arlt D, Huber W, et al. (2004). "From ORFeome to biology: a functional genomics pipeline.". Genome Res. 14 (10B): 2136–44. doi:10.1101/gr.2576704. PMID 15489336. 
  • Mehrle A, Rosenfelder H, Schupp I, et al. (2006). "The LIFEdb database in 2006.". Nucleic Acids Res. 34 (Database issue): D415–8. doi:10.1093/nar/gkj139. PMID 16381901. 
  • Takahashi T, Furuchi T, Naganuma A (2007). "Endocytic Ark/Prk kinases play a critical role in adriamycin resistance in both yeast and mammalian cells.". Cancer Res. 66 (24): 11932–7. doi:10.1158/0008-5472.CAN-06-3220. PMID 17178891. 

[edit] External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.